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Abstract. We examine the mechanisms producing departures from ideal mixing for vector mesons within
the context of the Hidden Local Symmetry (HLS) model. We show that kaon loop transitions between
the ideal combinations of the ω and φ mesons necessitate a field transformation in order to get the mass
eigenstates. It is shown that this transformation is close to a rotation for processes involving, like meson
decays, on–shell ω and φ mesons. The HLS model predicts a momentum dependent, slowly varying mixing
angle between the ideal states. We examine numerically the consequences of this for radiative and leptonic
decays of light mesons. The mean ω −φ mixing angle is found smaller than its ideal value; this is exhibited
separately in radiative and in leptonic decays. Effects of nonet symmetry breaking in the vector sector are
compared to those produced by the field rotation implied by the HLS model.

1 Introduction

The Hidden Local Symmetry (HLS) Model in both its
non–anomalous [2] and anomalous (FKTUY) sectors [3] is
a powerful tool for analyzing experimental data, by pro-
viding a clear framework with the fewest possible number
of free parameters. For instance, it allows a 3–parameter
description of the I = 1 pion form factor; this gives a
statistically optimal description in an energy interval run-
ning from threshold to the φ mass. This has been shown
by [4] in analyzing the world data set for e+e− → π+π−
annihilation collected in [5]. The exercise has been re-
peated as successfully with the data set recently collected
by the CMD–2 Collaboration on the VEPP–2M collider
at Novosibirsk [6].

However, in order to go beyond while staying within
the framework defined by the HLS model and its anoma-
lous sector, one needs to define a consistent scheme of sym-
metry breakings. Without SU(3) breaking, the HLS model
cannot successfully describe the kaon form factors; with-
out nonet symmetry breaking in the pseudoscalar (PS)
sector, it cannot be used reliably to describe radiative
decays of light mesons. The BKY mechanism [7,8] is a
consistent way to introduce SU(3) breaking in both the
vector (V) and PS sectors. It has been shown recently
[9] that the BKY SU(3) breaking in the PS sector is in
perfect agreement with all accessible predictions of Chiral
Perturbation Theory [10–12] at first order in the breaking
parameters. In order to reach this conclusion, the needed

a Supported by the US Department of Energy under contract
DE–AC03–76SF00515

ingredients were only the BKY breaking in the PS sector
(referred to hereafter as XA breaking), the kinetic energy
term of the non–anomalous HLS Lagrangian and the Pγγ
Lagrangian of Wess, Zumino and Witten [13]. Thus, this
part is on secure grounds.

When dealing with PS mesons, the question of nonet
symmetry breaking (NSB) cannot be avoided, as clear
from [14,15] for instance. It was already introduced in the
physics of single photon radiative decays (12 modes) by
O’Donnell long ago [16], relying basically only on group
theoretical considerations, but outside the context of ef-
fective Lagrangians. Thus, [16] already proved that nonet
symmetry breaking can be dealt with simply in both the V
and PS sectors. However, the way to include nonet sym-
metry breaking of both kinds consistently within a La-
grangian (HLS for instance) is not necessarily a trivial
matter.

Recently, we proposed [1] a model to describe, within
the HLS framework, all radiative decays of light mesons
(V Pγ or Pγγ processes) and their leptonic decays (ρ0/ω/
φ→ e+e− processes). Reference [1] included SU(3) break-
ing in the V and PS sectors in the manner of BKY [7,
8] and proposed a way to include simultaneously NSB in
the PS sector. Slightly later, [9] showed that this mixed
NSB andXA breaking scheme can be derived rigorously by
supplementing the non–anomalous HLS Lagrangian with
a piece coming from the ChPT Lagrangian, L1 [10,11].

In this context, the BKY SU(3) breaking in the vector
sector (referred to as XV ) acts only in leptonic decays.
As the data description was already quite satisfactory [1,
9], a possible breakdown of nonet symmetry in the vector
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sector was not examined; indeed, it could be guessed that
this would be beyond the accuracy of the available data, at
least if vector NSB shows up only at the coupling constant
level, as inferred in [16].

Except for SU(3) breaking effects, the model in [1] re-
covers the structure exhibited long ago by O’Donnell [16].
Fundamental parameters common to [1,16] are two mixing
angles. δP has a clear origin [17] and is essentially gener-
ated by SU(3) breaking in the PS sector. Reference [9] has
shown that the traditional single PS mixing angle θP is al-
gebraically related with the ChPT angle [10,11] and that
θ8 � 2θP .

Another fundamental ingredient of this model is an
angle, δV , which describes departures of the ω/φ system
from ideal mixing by bringing some strange quark con-
tent into the ω meson and, conversely, some non–strange
component into the φ meson. This angle was already a
basic ingredient in the axiomatic model of O’Donnell [16].
Its origin within effective Lagrangians has not yet been
worked out thoroughly, even if it is clearly connected with
ω ↔ φ transitions [8,18] inherent to VMD models like the
HLS model [2].

Therefore, it looks relevant to study in some details
how ω ↔ φ transitions in the HLS model generate mix-
ing of the ideal combinations into the physical ω and φ;
whether this correspondence is stricly speaking a rota-
tion, as commonly assumed [16,1], or a more complicated
transformation, is also an interesting issue. It is also in-
teresting to explore the origin of such a transformation
and see whether this could be attributable to some sort of
vector NSB.

We address these topics using the method of effective
Lagrangians, as higher orders in the HLS model would
meet the problem of its renormalizability which is not our
concern. At each step, however, we have examined analyt-
icity properties in connection with what can be inferred
from the Analytic S–matrix Theory [19]. Finally, we shall
comment on the way VMD has to be broken [1] in or-
der to account effectively for the observed ratio of yields
[K∗0 → K0γ]/[K∗± → K±γ] � 2 which is naturally pos-
sible within other contexts [16,20].

The outline of the paper is as follows. In Sect. 2 we
briefly remind the reader of the BKY SU(3) breaking
scheme we use. In Sect. 3, we define the effective
Lagrangian piece which accounts for loop corrections; this
is done essentially by relying on the results provided by the
Schwinger–Dyson equation in the ω/φ sector. In Sect. 4,
we show that the diagonalization of the vector mass term
at one–loop order is well approximated by a simple rota-
tion, albeit momentum dependent, for on–shell ω and φ
mesons; we also discuss somewhat the concept of mass–
shell for vector mesons. In Sect. 5, we remind how NSB in
the PS sector is generated; we also discuss some variants
of a possible vector NSB which are numerically studied.
In Sect. 6, we recall a Lagrangian for the anomalous sec-
tor, equivalent to FKTUY when no vector NSB exists;
however, it allows one to recover exactly the O’Donnell
model in its full generality. Section 7 recalls the breaking
procedure which permits to include both K∗ decay modes

within the set of successfully fitted radiative modes; we ar-
gue that this might imply a renormalization of the vector
fields presently missing in the BKY breaking scheme.

Section 8 is devoted to the numerical analysis of our
model of radiative and leptonic decays under various con-
ditions, noticeably with the momentum–dependent δV
which can be inferred from the HLS model. Effects of vec-
tor meson self–energies on vector meson masses are briefly
exemplified in Sect. 10. The fit results obtained are com-
mented on in Sect. 11, while Sect. 12 is devoted to conclu-
sions. Finally, analytic expressions for some loops, vector
meson self–energies and transition amplitudes, coupling
constants in the general case, are gathered in the Appen-
dices in order to make easier reading of the main text.

2 SU(3) breaking
of the Non–Anomalous HLS Lagrangian

Let us denote by P and V the bare pseudoscalar and vec-
tor field matrices under the assumption of nonet symme-
try. With the convention we use in this paper, they can be
found in [1] (see (6) and (9) there; notice that our ideal φ
field, denoted φI , is −ss). Let us denote by A the electro-
magnetic field and let Q = Diag(2/3,−1/3,−1/3) be the
quark charge matrix.

Let us also denote by XA = Diag(1, 1, �A) and XV =
Diag(1, 1,

√
�V ) the SU(3) breaking matrices in, respec-

tively, the PS and V sectors following from the BKY mech-
anism [7,8]. The unbroken limit is obtained by stating
�A = �V = 1. Then, the SU(3) broken HLS Lagrangian
can be written [7,8]

L = LA + aLV (1)

where a is the standard HLS parameter [2]. Following the
breaking scheme proposed in [8] (see Sect. III.D therein),
we have



LA = Tr[∂PXA∂PXA

+2ie(PQA−AQP )XA∂PXA]

LV = Tr[f2
π((gV − eQA)XV )2

+i(gV − eQA)XV (∂PP − P∂P )XV ]

(2)

where fπ is the pion decay constant (92.42 MeV [21]), g
is the universal coupling strength of vector mesons and e
is the unit electric charge. The corresponding Lagrangian
can be found expanded1 in [8] as (A5).

The properties of the kaon form factor at s = 0 imply
[7,8] that2 �A ≡ [fK/fπ]2. This is quite interesting as it
implies that SU(3) breaking in the PS sector does not
result in additional free parameters (�A = 1.5); this has
been checked with experimental data in [1]. Likewise, �V is
connected with the ratio of the vector meson Higgs–Kibble
(HK) masses [7,8] m2

φ/m
2
ω = m2

φ/m
2
ρ = �V ; practically,

1 In [8], the fields named ω and φ correspond to what we call
here ωI and −φI

2 We might use indifferently some notations related to each
other [1,9] �A = z = 1/Z for backward compatibility
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this relation is, however, less interesting than the previous
one since it implies that the Lagrangian (HK) masses can
be extracted reliably from data.

In order to restore the kinetic energy term of the PS
mesons to its canonical form, the XA breaking results into
a field renormalization [7,8]

Pren = X1/2
A PX

1/2
A (3)

On the other hand, the XV breaking [7,8] results in
a mass breaking in the vector meson sector, but not in
renormalization3 of the vector fields. After this breaking,
the mass term of neutral vector mesons becomes [8]

M =
af2

πg
2

2
[ρ2 + ω2

I + �V φ
2
I ] (4)

We define for further use m2
ρ = ag2f2

π . It should be
clearly stated here once more that these masses might
have little to do with the observed peak positions as re-
ported in [21]. This is due to the difficulty of estimating
unambiguously effects of the real part of vector meson self–
energies. This clearly follows from the form factor studies
in [22,23] and will also be illustrated below. On the other
hand, the definition itself of vector meson masses is not
unambiguous, as exemplified in [18,24–26]; this question
is discussed in Sects. 3 and 10.

3 An analytic approach to VMD
at one–loop order

As soon as one considers non–leading effects produced by
the various SU(3) breaking procedures, consistency im-
plies to account also for other non–leading effects which
proceed from the HLS Lagrangian itself, irrespective of
any breaking procedure. In this Section, we examine the
contributions originating from loops and show how they
can be incorporated effectively into the HLS Lagrangian.
The purpose is to define a coherent framework, able to
allow a phenomenological study of experimental data.

First of all, even if non–leading, loops produce observ-
able effects in measurable (and measured) quantities. An
illustrative example is the pion form factor in the timelike
region; in this case, the shape observed is essentially an
effect of dressing the ρ0 meson propagator, noticeably an
effect of the pion loop. As clear from [4,22], the detailed
structure of the pion form factor is perfectly reproduced
by the pion loop, and the ππ phase shift too. So, a coher-
ent phenomenological handling of data implies to account
properly for these leading loop effects. If pion form factor
studies [4,22] give a clear hint that loop effects in vector
meson self–energies play an essential role, loop corrections

3 The Yang–Mills kinetic term is added to the HLS La-
grangian but does not follow from its construction. On the
other hand, we shall see in Sect. 7 that data might give a hint
in favor of a renormalization of the vector fields. Any renor-
malization of these would obviously break the relation between
�V and the vector meson masses

to the ρππ vertex do not show up. In the following such
kind of one–loop effects are neglected.

In the present work, we focus on loops generated by
the non–anomalous HLS Lagrangian. Thus, we do not con-
sider loops generated by the anomalous VVP Lagrangian
(V P or Pγ) or double loop effects produced by the VPPP
anomalous Lagrangian. They do not change qualitatively
the picture; however, their possible effects in the realm of
state mixing and meson decays will be commented on at
the relevant places.

3.1 Effects of loops on vector meson masses

Let us neglect all electromagnetic contributions from the
HLS Lagrangian4 and work at one–loop order; we also de-
note from now on ρ the ρ0 field when there is no ambigu-
ity. Amputated from its Lorentz tensor part, the dressed
ρ propagator D(s) is given by the Schwinger–Dyson equa-
tion [18]; we have at one loop (g2) order

D−1(s) = D−1
0 (s) −Πρρ(s) (5)

where the inverse bare propagator is D−1
0 (s) = s−m2

ρ and
Πρρ(s) is the ρ meson self–energy which contains contri-
butions from the pion and both kaon loops [18]. The ρ
self–energy is given in Appendix D and can be explic-
itly constructed using formula from Appendix A. This
can be effectively obtained from the HLS Lagrangian by
adding a pieceΠρρ(s)ρ2/2 which turns out to modify the ρ
mass term coefficient to [m2

ρ+Πρρ(s)]/2. This (effectively)
modified Lagrangian L′(s) gives automatically the dressed
ρ propagator requested by phenomenology and coincides
with the solution to the Schwinger–Dyson equation. Be-
low the two–pion threshold we have L′

(s) = L′†(s), for
any real s. Above, the hermiticity condition is naturally
extended to L′

(s) = L′†(s∗), where the symbol ∗ denotes
complex conjugation; this property, known as hermitian
analyticity [19,27], is indeed fulfilled by L′

(s).
Therefore, using L′

(s) turns out to include directly
one–loop corrections into the HLS Lagrangian in a way
consistent with the Schwinger–Dyson equation and in
agreement with the analyticity assumption. The HLS La-
grangian can be effectively modified correspondingly in or-
der to include also one–loop effects associated with
charged ρ’s and with all K∗ fields. One should stress that
these additional pieces a priori depend on the invariant
mass squared s; they are given in Appendix D and can be
constructed using the results in Appendices A and B.

As the considered fields are effective fields, this s de-
pendence is not really an issue and should only reveal
non–local effects due to the fact that vector fields are

4 Within the VMD framework, the photon has a special sta-
tus. Indeed, the Lagrangian expressed in terms of physical
fields has a quadratic term which contains mixed terms γρ0,
γω, γφ. It is the essence of VMD to keep these transition terms.
For a simultaneous handling of ρ0 and photon within the HLS
model, see [18]
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functions of more fundamental ones (quark and gluon de-
grees of freedom). Additionally, this s–dependence is a
natural feature at hadron level; it tells that the mass of
a resonance does not fulfill s − m2

V = 0 any longer, but
s−m2

V −ΠV V (s) = 0. In the case of the ρ and K∗ mesons,
this proves that the physical mass is shifted into the com-
plex s–plane and that the connection between the HK
mass m2

V and the real part of the pole is somewhat lost
(see [18] for the ρ meson).

3.2 The special case of the ω and φ mesons

In the ωI/φI sector, the situation is slightly more compli-
cated. In this case, the Schwinger–Dyson equation is the
2 × 2 matrix equation

D−1(s) =


 s−m2

ωI
0

0 s−m2
φI




−


ΠωIωI

(s) ΠωIφI
(s)

ΠφIωI
(s) ΠφIφI

(s)


 (6)

which exhibits the dressing of the mass terms as for ρ and
K∗ mesons, but also a non–diagonal term. The pieces gen-
erating these loops at order g2 are given by the following
V − PS interaction term from the LV part of the HLS
Lagrangian [8]

T1 = − iag
4
Z[ωI +

√
2�V φI ]

[
K+ ↔

∂ K
− +K0 ↔

∂ K
0
]

− iag
4
ρ

[
Z

(
K+ ↔

∂ K
− −K0 ↔

∂ K
0
)

+2π+ ↔
∂ π

−
] (7)

where we have renormalized the kaon fields according to
(3) above (Z = [fπ/fK ]2).

At first non–leading order, this term generates KK
and π+π− loops. Both KK loops generate the ωI and φI
self–energies ΠωIωI

(s) and ΠφIφI
(s). They also produce

ωI ↔ φI transitions with a non–zero amplitude ΠωIφI
(s).

The ρ self–energy Πρρ(s) receives contributions from the
pion loop and from both kaon loops, as stated above. How-
ever, as SU(2) symmetry is assumed, there is no ρ↔ ωI or
ρ ↔ φI transition loops. Indeed, in these cases, charged
and neutral kaon loops exactly compensate [18]. This is
why we have decoupled the ρ0 channel while writing (6).

In contrast with ρ and K∗ fields which remain mass
eigenstates with only one–loop modified masses, (6) shows
that ωI and φI are no longer mass eigenstates at one–
loop order. The physical masses are (complex) solutions
of Det[D−1(s)] = 0. This equation can also be written
[s− λω(s)][s− λφ(s)] = 0, in terms of the eigenvalues of

M2 =


ΠωIωI

(s) +m2
ωI
ΠωIφI

(s)

ΠφIωI
(s) ΠφIφI

(s) +m2
φI


 (8)

They depart from the HK masses (λω = m2
ωI

and
λφ = m2

φI
) because of loops and become running. The

momentum–dependent analytic matrix5

G(δV ) =


 cos δV sin δV

− sin δV cos δV


 (9)

with

tan 2δV (s) =
2ΠωIφI

(s)
m2

ρ(1 − �V ) + (ΠωIωI
(s) −ΠφIφI

(s))
(10)

diagonalizes (6). The first term in the denominator is ac-
tually m2

ωI
−m2

φI
, in terms of the HK masses coming out

from the BKY broken HLS Lagrangian [8]. Indeed, we
have

D−1
G = [GDG−1]−1 = sI −GM2G−1

= sI −


λω(s) 0

0 λφ(s)


 (11)

(we have always G−1(δV ) = G(−δV ) as if G were always
an actual orthogonal matrix), and the eigenvalues

λω(s) = [m2
ωI

+ΠωIωI
(s)] cos2 δV + [m2

φI
+ΠφIφI

(s)]
× sin2 δV +ΠωIφI

(s) sin 2δV

λφ(s) = [m2
φI

+ΠφIφI
(s)] cos2 δV + [m2

ωI
+ΠωIωI

(s)]
× sin2 δV −ΠωIφI

(s) sin 2δV
(12)

are the running squared masses associated with the phys-
ical eigenstates of the HLS Lagrangian at one–loop order.
In scattering processes the corresponding dressed propa-
gators are D−1

ω (s) = s− λω(s) and D−1
φ (s) = s− λφ(s).

The “trigonometric” functions entering (12), can be
expressed easily in terms of the right–hand side of (10)
using

cos 2δV (s) =
1

(1 + tan2 2δV (s))1/2
,

sin 2δV (s) =
tan 2δV (s)

(1 + tan2 2δV (s))1/2

(13)

A detailed study of the singularities of the eigenvalues
and eigenvectors as real–analytic functions is beyond the
scope of this paper. Let us only mention that renormal-
ization conditions (see below) on self–energies might have
to compensate (possible) simple zeros of 1 + tan2 2δV (s)
located in the physical sheet of the scattering amplitudes.

5 The matrix G(δV ) can be handled as if it were actually
an orthogonal matrix, even for complex values of s or for
real s above 4m2

K . Here and in the following, trigonometric
functions should be understood as their underlying exponen-
tial expressions. Then, all usual trigonometric relations apply,
even for complex arguments, reminding that cos iu = coshu,
sin iu = i sinhu, etc. . .
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On the other hand, Det[D−1(s)] is tightly connected with
the D function of the former N/D formalism [19,27,28]
and has certainly all desired analyticity properties.

The physical ω mass is solution of s−λω(s) = 0, while
the physical φ mass is separately solution of s−λφ(s) = 0.
Physical ω and φ fields correspond to these mass eigen-
states; they are obviously associated with the eigenvectors
of the matrix M2 of (8). Each physical field can be iden-
tified by inspecting the behavior of the eigensolutions at
δV → 0. This identification is meaningful as the effective
value of δV is small, a few degrees only [1].

3.3 Two regimes for the ω − φ mixing

It is easy to check that all features described in the two
previous Subsections can be obtained by adding the fol-
lowing effective piece to the HLS Lagrangian

Lloops(s) =
1
2

[
Πρρ(s)ρ2 +ΠωIωI

(s) ω2
I

+ΠφIφI
(s) φ2

I + 2ΠωIφI
(s) ωIφI

]

+
[
Πρρ(s)ρ+ρ− +ΠK∗K∗(s)

(K∗+K∗− +K∗0K
∗0
)
]

(14)

All needed loops and self–energies are gathered in Ap-
pendices A–D; couplings constants can be identified by
examining the Lagrangian in (A5) of [8] and are not listed
here. They should be modified according to field renormal-
ization procedures. Therefore, the use of Lloops(s) turns
out to account directly for one–loop effects into the prop-
agators, in a way consistent with the Schwinger–Dyson
equation. This Lagrangian piece fulfills the hermitian an-
alyticity condition [19] Lloops(s) = L†

loops(s
∗).

In the approximation where electromagnetic contribu-
tions and anomalous Lagrangian terms [3] are neglected,
all loops involved in the ω/φ sector are basically the KK
loop only. Let us denote by Π(s) the KK loop amputated
from the coupling constants to vector mesons and state
ΠV V ′ = gV KKgV ′KKΠ(s) for any pair of vector mesons
(V, V ′) coupling to kaon pairs.

There are clearly two regimes for the ω − φ mixing,
depending on the value of s involved. As clear from Ap-
pendix A, Π(s) is real for real s such that s ≤ 4m2

K and
acquires an imaginary part when s ≥ 4m2

K . The ωI − φI
transitions affect the dressed propagators already at one–
loop order, as illustrated above. However, the same tran-
sition loops affect also ωI and φI as external legs. The
diagonalization of the full mass term

M(s) =
af2

πg
2

2
[ω2

I + �V φ
2
I ] +

1
2
[ΠωIωI

(s) ω2
I

+ΠφIφI
(s) φ2

I + 2ΠωIφI
(s) ωIφI ] (15)

of the Lagrangian Lloop+LHLS , defines the effective physi-
cal fields and also diagonalizes the Schwinger–Dyson equa-
tion. The physical ω and φ fields have running squared
masses λω(s) and λφ(s) respectively.

For real s ≤ 4m2
K ,G(δV ) is indeed a (mass–dependent)

rotation while above it is not. However, the transforma-
tion G is still valid and fulfills G−1(δV ) = G(−δV ). δV (s)
can always be split up into its real and imaginary parts
δV (s) = αV (s) + iβV (s) which are no longer (separately)
analytic functions; αV (s) and βV (s) can be derived from
(10).

The mass matrix M2 is rendered diagonal by physical
fields which are combinations of the ideal states. It is easy
to check that these effective physical fields are

ω
φ


 =


 cos δV sin δV

− sin δV cos δV





ω

I

φI


 (16)

With this definition of physical fields, the mass term
(15) of the modified HLS Lagrangian becomes canonical6

M(s) =
1
2
[λω(s)ω2 + λφ(s)φ2] (17)

and fulfills M(s) = M†(s∗). It is worth noting that, in the
effective approach we follow, the physical ω and φ fields
behave like real–analytic functions of s and are associated
with running masses which are also real–analytic functions
of s.

Equation (16) is valid for any value of s. For complex
s or for real s above 4m2

K , this can be written more tra-
ditionally
ω
φ


 =


 coshβV i sinhβV

−i sinhβV coshβV





 cosαV sinαV

− sinαV cosαV




×


ω

I

φI


 (18)

in terms of the real and imaginary parts of δV . For real s
below 4m2

K , βV vanishes and G(δV ) is a rotation of angle
as given by (10). This can also be written

tan 2δV (s) =
2
√
2aZ2�VΠ(s)

8f2
π(1 − �V ) + aZ2(1 − 2�2V )Π(s)

(19)

in terms of the basic HLS parameters from the broken La-
grangian. Π(s) is the generic kaon loop already defined
and depends on a subtraction polynomial P (s) (see Ap-
pendices A and D) discussed in the following Subsection.
Departures of the ω − φ mixing from a pure rotation are
exhibited in (18) and will be discussed below.

3.4 Renormalization conditions on loops

The self–energies we have defined are each given by a dis-
persion relation on the imaginary part of a loop function;

6 The s dependence of the fields is understood. One could
write this expression in a more symmetric way, taking into
account that ω(s) ≡ ω†(s∗) and φ(s) ≡ φ†(s∗)
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they are analytic functions of s defined on a 2–sheeted Rie-
mann surface with a second order branch point at thresh-
old. This implies some analytic properties for propagators
[19,27] which are not examined here; let us only men-
tion that physical meson masses correspond to propaga-
tor poles in the unphysical sheet of a 2–sheeted Riemann
surface onto which amplitudes are defined7.

Integrability conditions on the dispersion integral im-
ply that the dispersion relation should be at least twice
subtracted, which gives rise to a subtraction polynomial
P (s) of (at least) first degree with (at least) two unknown
coefficients which have to be fixed by stating some renor-
malization conditions: P (s) = d0 + d1s. The minimum
number of subtractions is mandatory in order for the in-
tegral to make sense; however, the actual number of sub-
tractions can be larger and depends on the assumed be-
havior at infinity of the function considered. If one per-
forms k subtractions, giving rise to a polynomial of de-
gree k − 1, it is useful (but not mandatory) to require
lims→0[Π(s) − P (s)] � O(sk).

It is quite usual for all meson self–energies to fix the
constant terms d0 of the polynomials P (s) to zero, in or-
der to ensure that the photon remains massless [22]. It
also plays some role [29] for current conservation. This
condition is more stringent than needed as, for instance,
masslessness of the photon implies only that some com-
bination of the d0’s is zero8. However, assuming that the
d0 parameter associated with each possible loop is zero
implies that each loop fulfills lims→0ΠV V ′ = 0. This con-
dition has the virtue to ensure that each (running) vector
meson mass coincides with its HK mass value at the chiral
point. This is a strong condition which can be assumed,
at least provisionally, because of its aesthetic character.

On the other hand, the renormalization condition d0 =
0 is also appropriate for the transition loop ΠωIφI

(s). In-
deed, the condition ΠωIφI

(s = 0) = 0 allows to derive
the amplitudes [1,9] for Pγγ processes from the FKTUY
Lagrangian [3] PV V by making δV (s = 0) = 0. Stated
otherwise, internal ω or φ lines computed at s = 0 co-
incides with ωI or φI respectively. In the mass region of
vector resonances, the condition δV = 0 is no longer ful-
filled for obvious reasons (see (19)).

Therefore, the s–dependence of δV is a fundamental
property as it allows to make consistent a zero value for
mixing angle at s = 0 with non–zero values in the mass
region of vector resonances.

Concerning the ω/φ mixing which is presently our
main concern, it remains to fix the rest of the polyno-
mial P (s). As there is no clear and unambiguous state-

7 Roughly speaking, poles associated with a resonance come
by pairs; specializing to 2–body decay channels as in the HLS
model, the pole effectively associated with the resonance is
located at some sR in the unphysical sheet close to the physical
region, while there exists a so–called shadow pole [19] located
at s∗

R in the same Riemann sheet but generally far from the
physical region. This is not necessarily true if resonance poles
are located close to some threshold

8 Each relevant loop gives rise to a polynomial P (s) and all
such polynomials are different from each other

ment about the remaining coefficients, it follows that the
phase shift δV (s) is somewhat free, or that its value can be
used as additional renormalization condition. As explicit
in (18), we have assumed ΠV V ′ = gV KKgV ′KKΠ(s); this
is actually a strong assumption which serves only to lessen
the number of free parameters (or of needed renormal-
ization conditions) in physical problems, as the subtrac-
tion polynomials (not the rest!) might be not related9 by
simple rescaling by the appropriate product of coupling
constants. This point is commented on slightly more in
Appendix D.

4 Vector meson mass–shell
and on–shell ω − φ mixing

Particle mass–shell is a well defined concept for objects
like PS mesons. For others, like vector mesons, this con-
cept is somewhat more embarrassing. Indeed, one can
choose to define it as zero of the real part of the inverse
propagator of this particle; this is recommended by the
Particle Data Group [21] but not free from ambiguities,
depending on coupled channels with thresholds above the
vector particle mass. The HK mass of a vector meson, even
if the most relevant from the point of view of effective La-
grangians, is somewhat indirect as it does not correspond
directly to a measured quantity. It will be seen below that
the HK masses of ω and φ mesons are both below the
two–kaon thresholds.

From the rigorous point of view of S–matrix Theory
[19], the relevant mass–shell concept is rather the pole
location of the propagator. Focusing on the ω/φ sector,
we have seen that the mass squared involves solutions to
an eigenvalue problem and should satisfy s − λω(s) = 0
and s− λφ(s) = 0. So the pole is certainly located in the
complex plane. The issue is basically the same for the ρ
meson [18] or the K∗’s and is quite general [26].

There is no reported [21] information on the pole po-
sition for the ω and φ mesons. However, using the re-
ported masses (MV ) and widths (ΓV ) [21], one can state
sV = M2

V − iMV ΓV with some unknown precision. We
thus can guess that the poles for the ω and φ mesons are
very close to the physical region and, additionally, that
the real part of the φ pole is very close to the 2–kaon
thresholds.

Neglecting its imaginary part compared to its real part,
the ω on–shell pole is certainly much below the 2–kaon
thresholds. Therefore, it is appropriate to state δω(sω) �
δω(M2

ω), and get a real phase.
In the same approximation, the φ mass is however,

slightly above the 2–kaon thresholds and then in a region
where δφ(sφ) � δφ(M2

φ) carries a tiny imaginary part. It
is quite instructive to inspect the loop function Π(s) as
given in (A8) from Appendix A (with s0 = 4m2

K) and
look at its behavior in the vicinity of the observed φ mass.
The logarithm and the imaginary part are of order � 0.05
GeV2 compared to the polynomial part (� 0.3 GeV2).

9 If indeed related, the proof is anyway not completely
straightforward



M. Benayoun et al.: An effective approach to VMD at one loop order 309

Therefore, it is a priori justified to neglect the imaginary
part of the loop function while staying at the φmass–shell;
somewhat farther beyond this point, this statement would
have surely to be revisited.

Therefore, even if somewhat accidental10, the matrix
G(δV ) which gives the φ and ω eigenstates is indeed close
to a pure rotation matrix when using the pole defini-
tion for the mass–shell. Anticipating our results, we have
checked that the subtraction polynomial which is fitted
in radiative and leptonic decays does not change this pic-
ture. If one rather defines the mass–shell through the HK
masses, G(δV ) is a pure rotation matrix.

Additionally, we have also neglected in the present ap-
proach other e2 contributions like the loops π0γ, ηγ, η′γ
which follow from the FKTUY Lagrangian, as given in
[1]. These contribute to provide small imaginary parts (of
order e2) to the self–energies we consider for s ≥ m2

π0 ,
s ≥ m2

η, s ≥ m2
η′ . Most V P loops neglected only con-

tribute to self-energies strictly speaking and we shall argue
below why their influence is small. Inspecting the anoma-
lous VVP Lagrangian (see (A8) or (A14) in [1]), the ne-
glected contributions to ΠωIφI

(s) are K∗K loops which
have HK threshold masses above the φ meson; thus, they
would contribute as real quantities in our mass region of
interest. We shall argue below that such effects are practi-
cally harmless, essentially because the mixing function is
really slowly varying in the mass region involved in meson
decays.

Some of these neglected loops can be computed in
closed form (see Appendix C). We have finally neglected
two–loop effects produced from the FKTUY Lagrangian
couplings and double loop effects produced by the V PPP
FKTUY Lagrangian [3]; this will be numerically justified
below. Thus, concerningΠωIφI

(s), the most important ne-
glected effects are either two–loops or of order e2.

So, whatever the mass–shell definition, when working
with on–shell ω and φ mesons, the transformation from
ideal to physical fields is very close to a rotation and, then,
making this approximation is justified. However, as a con-
sequence of VMD at one–loop, δV (s) is s–dependent. This
is practically equivalent to having two different mixing an-
gles δω = δV (m2

ω), δφ = δV (m2
φ) functionally related. The

question to which extent these two angles differ is ad-
dressed below; however, the statistical quality of the fits
in [1] with only one such mixing angle allows to infer that
they are probably close together. On a related topic, let
us recall that a momentum–dependent mixing angle for
pseudoscalar mesons has been recently considered [30].

For practical purposes in fit procedures, we have pre-
ferred computing the phase δV (s) as the HK masses of the
ω and φ mesons11. This sets the ω mass close to its PDG

10 Small widths and/or small imaginary part for the kaon loop
are clearly accidental features
11 Actually, the situation for the φ meson is even more uncer-
tain than sketched above; within the HLS model, and pushing
aside electromagnetic interactions, KK scattering in (I = 0,
l = 1)–wave is a 2–channel problem with thresholds at K0K

0

and K+K−; the domain of definition is a 4–sheeted Riemann
surface. Even if of electromagnetic origin, the distance of the

value and the φ mass slightly below the 2–kaon thresh-
olds. As these HK masses are real, the matrix G is indeed
orthogonal.

When dealing with scattering processes, i.e. over a
broad range for s extending possibly far above s = 4m2

K ,
the running of the mixing angle δV (s) –which then carries
an imaginary part– is a feature which should play some
role.

5 Nonet Symmetry Breaking (NSB)
in the HLS model

In [9], it was shown that the HLS Lagrangian can undergo
NSB in the PS sector by adding to (1) the following term

L′ =
1
2
[µ2η20 + λ∂µη0∂µη0] (20)

where η0 denote the singlet PS field. Such contributions
can be inferred from Chiral Perturbation Theory [10,11]
(ChPT).

At the level of radiative decays, the additional kinetic
energy term implies to modify the renormalization condi-
tion (3) to [9]

P = X−1/2
A (P ren

8 + xP ren
1 )X−1/2

A (21)

using obvious notations, and by defining the PS NSB pa-
rameter x = 1/

√
1 + λ. Then exact nonet symmetry is

defined by x = 1. In order to perform both SU(3) break-
ing and NSB in the PS sector, we refer here to the change
of fields in (21), which diagonalizes the PS kinetic energy
in L + L′ at first order. It has been shown that this fits
[9] perfectly all related information from ChPT [10–12]
concerning the η/η′ sector at first order in the breaking
parameters. One can then consider quite reliable the full
PS breaking scheme represented by (21).

In the vector sector, the way to introduce NSB is un-
clear. It is even not clear whether it can be done in full
accordance with the conceptual framework of the HLS
model. One could imagine that an appropriate breaking
term of the HLS Lagrangian would be an additional sin-
glet mass term

L′′ = µ2
0(

√
2ωI − φI)2 (22)

and/or a change of field of the form

V = V ren
8 + yV ren

1 (23)

which corresponds to having g as coupling constant for the
vector octet matrix and yg for the singlet one. Departures

thresholds (� 8 MeV) is not negligible compared to the dis-
tance of the PDG mass for the φ to the K0K

0
threshold (� 24

MeV). Therefore, branch points and poles are gathered in a
tiny neighborhood; this makes the local topology of the 4–
sheeted Riemann surface influencing and, at the level of a few
MeV’s, the physical φ pole position cannot be guessed reliably
from its reported mass [21]
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from y = 1 would then flag unambiguously NSB in the
vector sector.

However, if one focuses on deriving Pγγ amplitudes
from the VVP Lagrangian, as done in [1], the difficulty is
that this derivation is impossible – or at least not obvious
– except if one assumes that µ2

0 and y are running and
that µ2

0(s = 0) = 0 and y(s = 0) = 1. Stated otherwise:
the above mentioned derivation is (trivially) possible only
if vector NSB vanishes at the chiral point. It should be
noted that both XA and XV breakings on the one hand
[7,8] and the PS NSB breaking [1] mentioned above on
the other hand, do not require such a condition within
the HLS framework [1]. However, the connection between
PV γ and PV V amplitudes, named Extended VMD in
[3], is an extension of the usual VMD assumption which
might have to be reconsidered, if motivated; it is worth
mentioning that [3] does not recommend the possible fur-
ther extension of the VMD assumption to box anomalies
(γPPP ).

Considering the HLS model as an effective model, one
can, nevertheless, investigate the question of NSB in the
V sector to see whether some support can be found in
experimental data.

A term like (22) results essentially in an additional
contribution to the phase shift δV and is hard to disen-
tangle from the loop effects which naturally follow from
the HLS Lagrangian at first non–leading order. It could
only break the relation between the phase shift δV and
the loop functions, allowing thus for more freedom in fits.

A breaking term like (23) can be generated (in a
presently unknown way) by breaking the vector Yang–
Mills term which is beyond the scope of the HLS model12.
What is important to note is that, whatever this unknown
procedure, it should summarize into a relation like (23) at
leading order in breaking parameters.

We limit ourselves to examining the couple of vector
NSB mechanisms given by (22) and (23).

6 Radiative decays of light mesons

One can construct axiomatically the decay amplitudes for
the processes PV γ assuming SU(3)×U(1) group structure
for PS and V mesons. It has been done in the classic paper
of O’Donnell [16] (see also the Appendix in [31] where
some misprints have been corrected). It can be checked
easily that the coupling constants gV Pγ of [16] can be
derived from the V Pγ term of the following anomalous
Lagrangian

LWZW = KεµνρσTr [∂µ(eQAν + gVν)∂ρ(eQAσ + gVσ)P ]
(24)

using (21) and (23) above (with �A = 1 in order to limit
oneself to NSB only). The coefficient K = −3/(4π2fπ) is a
normalization fixed by requiring the coupling constant for

12 We mean that some kind of relation should then exist for y,
in correspondence with the one relating the PS NSB parameter
x and the (basic) kinetic energy breaking parameter λ recalled
above

π0γγ to be the usual one. Equation (24) gives the connec-
tion between coupling constants for Pγγ, PV γ and PV V
processes as expected from the Extended VMD assump-
tion of [3].

The notations in the present work (or in [1]) and in [16]
are connected by gV8P8γ = G = −3eg/(8π2fπ), gV8P1γ =
xG and gV1P8γ = yG. Therefore, (23) holds whatever is
the precise underlying relation between y and more basic
(and unknown) vector NSB parameters.

This is quite an interesting pattern. Indeed, if vector
NSB is only hidden inside δV , it seems beyond any unam-
biguous phenomenological evidence. However, if it affects
also separately the vector coupling constant by a factor y,
then departures from y = 1 can be explored.

Moreover, applying (24) by assuming additionally �A
�= 1 is legitimate. Indeed, as recalled above, [9] has shown
that the XA breaking scheme [7,8] is in accord with all
accessible predictions of ChPT [10–12].

The coupling constants for radiative decays have been
computed starting from (24) assuming NSB and SU(3)
breaking in both sectors. Additionally, vector meson de-
cays to lepton pairs have been computed assuming y �= 1;
in this case, corrections are quite negligible but might be
considered in order to be complete. All formulae of rele-
vance are given in Appendix E. In the limit y = 1, they
coincide with the corresponding expressions derived in [1]
starting from the FKTUY Lagrangian. In the general case
where y could differ from unity, (24) can be used as as al-
ternative way to express the Extended VMD assumption.

We also work in the framework of the so–called K∗
model commented on below. It introduces an additional
breaking procedure [1] in order to account for the observed
K∗ radiative decay rates and a dimensionless breaking
parameter �T fit as [1] �T = 1.19 ± 0.06.

7 Comments about the K∗ model

Referring to [1] for details, it has been shown that the
above described breaking mechanisms (V and PS NSB’s,
XA,V breakings) altogether account for all leptonic and ra-
diative decays, except forK∗± → K±γ. More precisely, no
way has been found to allow for the observed ratio of yields
[K∗0 → K0γ]/[K∗± → K±γ] � 2; it cannot be else than
� 4 within the approach of O’Donnell [16] or starting from
(24) supplemented with the breaking procedures already
described. Quite interestingly, the non–relativistic quark
model (NRQM) [16] allows for more freedom, depending
on the ratio of the quark magnetic moments r = µs/µd

GK∗0K0γ

GK∗±K±γ
= −1 + r

2 − r (25)

More recently, motivated by the surprisingly large suc-
cess of NRQM, G. Morpurgo has shown that the NRQM
predictions K∗ radiative decay coupling constants [20] are
valid in low energy QCD, provided one assumes that glu-
onic contributions are negligible in this energy range. This
property plays also some role in leptonic decays [33].
Therefore, it is of concern to see how a relation as appro-
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priate as (25) could be derived within the VMD frame-
work.

In order to account for the observed K∗ relative rate,
[1] tried first introducing the breaking procedure (named
there XW breaking) proposed by Bramon, Grau and
Pancheri [32]. This turned out to introduce another break-
ing matrix XW = Diag(1, 1, 1 + cW ) in the FKTUY La-
grangian [3]; this can be symbolically written
Tr[V XWV P ]. However, the degree of algebraic correla-
tions introduced by SU(3) among all single photon radia-
tive decay modes is such that all fits return XW = 1 and
do not allow for any improvement concerning the observed
ratio [K∗0 → K0γ]/[K∗± → K±γ] � 2.

In order to change this picture, [1] proposed to per-
form the replacement V ⇒ XTV XT in addition to the
BGP breaking; XT is assumed to have the classical SU(3)
breaking structure XT = Diag(1, 1, 1 + cT ). In this case,
one succeeds in fitting both observed K∗ radiative decay
modes. Additionally, it was phenomenologically observed
[1] that XWX

4
T = 1 is well fulfilled by the full set of radia-

tive decays; this makes all coupling constants independent
of the XW −XT breaking, except for the K∗ modes which
become 


GK∗0K0γ = − G′

√
�T
3

(
1 +

1
�T

)

GK∗±K±γ = G′
√
�T
3

(
2 − 1
�T

) (26)

where G′ = −3eg/(8π2fK) and �T = (1 + cT )2. The ra-
tio which can be derived from (26) is in obvious corre-
spondence with (25) and allows to identify r ↔ 1/�T . To
our knowledge, the mechanism proposed in [1], and just
sketched, is the single one able to reproduce the NRQM–
Morpurgo relation for theK∗ decay rates in a VMD frame-
work.

The change V ⇒ XTV XT is in clear correspondence
with the change of (PS) fields imposed by the BKY XA

breaking mechanism (see (3) above). It resembles what
could be a vector field renormalization, presently lacking
within the BKY breaking framework [7,8]. If this were so,
the K∗ sector is the single one where this effect can be
unambiguously visible. Whether it is possible to derive it
rigorously within the HLS framework deserves some effort
which should be supported by new data confirming the
reported level for the K∗± radiative decay rate.

It is worth mentioning the following remarks
– The phenomenological observation [1] XWX

4
T = 1 can

be interpreted if (24) could be rewritten when the
XW −XT breaking mechanism is at work

L′
WZW = KεµνρσTr

{
[XT∂µ(eQAν + gVν)XT ]

×XW [XT∂ρ(eQAσ + gVσ)XT ] P
}

(27)

In order that the A2 term still gives the 2–photon de-
cay amplitudes predicted by the original WZW La-
grangian [13], XWX

4
T = 1 becomes indeed a necessary

condition.

– If the replacement V ⇒ XTV XT is indeed the renor-
malization condition for the vector fields, then �V in
the standard formulae (given in Appendix E or in [1])
actually hides as many powers of �T as the number
of φI fields the term involves. For leptonic decays �V
should then be understood as �V �T . If the above re-
placement were theoretically motivated, it would indi-
cate that the φ HK mass squared is not [7,8] m2

ρ�V
but rather m2

ρ�V �
2
T ; this enforces our standpoint that

the relevance of any a priori value for the true �V is
pending and might have to wait for a final answer con-
cerning vector field renormalization in the HLS–BKY
framework.

8 Numerical analysis

In studies published elsewhere [9], it was shown that the
PS mixing angle θP and the PS NSB parameter x were
fulfilling

tan θP =
√
2
1 − z
2 + z

x (28)

exceptionally well (z = [fK/fπ]2). This relation is a conse-
quence of the small value of the decay constant F 0

η recently
defined in ChPT [10,11]. Quite interestingly, it projects
onto the PS mixing angle θP most departures from nonet
symmetry. From the point of view of numerical analysis,
this also allows to reduce the number of free parameters
by one unit without any change in the fit quality. In all
fits referred to below, this condition has been either re-
laxed or requested. In all cases where fits returned a good
probability this additional requirement has been found to
leave the χ2 unchanged; setting this condition mechani-
cally improves the probability, as it turns out to increas-
ing the number of degrees of freedom for exactly the same
χ2 value. The set of data submitted to fits are the 14 ra-
diative decays13 V Pγ and Pγγ and the 3 leptonic decays
ρ/ω/φ → e+e− taken from the Review of Particle Prop-
erties [21]; this represents 17 data points, i.e. the largest
sample ever submitted successfully to a fit. All formulae
used for fits can be found in Appendix E. We do not re-
produce the reconstructed branching fractions as they are
indistinguishable from the final results in [1] or from those
in Table 2 of [9].

In order to explore the question of vector meson mix-
ing, we have examined several analysis strategies.

1/ Approximating the right-hand–side of (10) by a con-
stant. This is nothing but the approach developed in
[1] with one constant mixing angle δV . In this case we
have either left y free or fixed it to 1.

– Setting y = 1 (no vector NSB), we get χ2/dof =
9.14/11 (61% probability) as in [9] after stating (28).
From a statistical point of view, this result can be con-
sidered as optimum. The number of fit parameters is

13 This counting leaves aside the process π0 → γγ which
would only fix the value of the decay constant fπ already taken
from [21] as for fK
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6, out of which 4 are especially devoted to the 14 ra-
diative decays (δV , δP , the universal vector coupling
constant g and the parameter �T , specific to the K∗
sector) and 2 (a, �V ) concern solely the leptonic sector.

– Leaving y and δV free, we get χ2/dof = 8.82/10 (55%
probability); the χ2 is practically unchanged but the
probability is slightly degraded by having one more
free parameter (i.e. one less degree of freedom). In this
case we get y = 1.012 ± 0.022, a quite insignificant
departure from no vector NSB; the vector mixing angle
θV = 31.57◦ ± 0.62◦ is still found below ideal mixing,
that is δV � −3.70◦±0.62◦, quite significantly negative
(about a 6 σ effect). This result is in agreement with
the phase of Dillon and Morpurgo [33] which relies
on only leptonic decays of vector mesons. Removing
the leptonic decay modes from the fit leaves the χ2

unchanged (χ2/dof = 8.52/10, 38% probability) and
provides the same values for δV (in magnitude and
sign) and for y.

– Finally, we have forced δV = 0 and left y free, in or-
der to see whether explicit vector NSB could alone do
the work generally attributed [1,33] to angular depar-
tures from ideal mixing. In this case departure from
nonet symmetry is fit as large in the vector sector
(y = 0.893 ± 0.005) as in the PS sector (x = 0.901 ±
0.017); however, the fit quality is unacceptably de-
graded (χ2/dof = 41.81/11, 2. 10−5 probability).
Comments: Concerning the vector mixing angle, sev-
eral conclusions follow from these fits. First, whatever
its precise origin, the effects of angular departures from
ideal mixing are fundamental; indeed, whatever the
way used in order to circumvent it, the gain which can
be attributed to it is of the order of 30 units in the χ2,
a quite significant effect for a single parameter. More-
over, our various fits show that radiative decays and
leptonic decays carry separately the same information
about the magnitude and sign of δV . The same sign in-
formation has been reached by the quite independent
approach of [33] using only leptonic decays. We come
back on this point in Sect. 11.
Explicit departures from nonet symmetry for vector
mesons (y) are statistically insignificant (about 0.5 σ)
and can clearly be ignored. Stated otherwise, if there is
nonet symmetry breaking in the vector sector, it can-
not be the manifest U(3) breaking à la O’Donnell [16],
as data sharply favor gV8P8γ = gV1P8γ . Quite interest-
ingly, [20,33] reach a parent conclusion in a framework
quite different from ours; they express it by stating
that gluonic annihilations should have negligible con-
tributions in light meson decays.

2/ We consider the vector mixing angle δV as the s–
dependent function given in (10). In this case, through
the kaon loop, it depends on a well defined function
and an arbitrary polynomial (see (D3)). The behav-
ior of P (s) is minimally d0 + d1s; however, several at-
tempts led us to go one unit beyond minimality in
subtracting the dispersion relation and then choose
P (s) = d0 + d1s+ d2s2; the final loop function used is
given in (D3). In Sect. 4, we have shown that the ap-

propriate renormalization condition for the constant
term here was d0 = 0. On the other hand, analysis of
fit results has shown that the renormalization condi-
tion d1 = 0 is numerically appropriate, despite that d1
and d2 happens to be highly correlated (99%).
Therefore, the function we use for δV (s) depends on
one single free parameter (d2) and on a non–trivial
well defined logarithm function. This single parame-
ter practically generates 2 mixing angles δV (m2

ω) and
δV (m2

φ) functionally related with each other. In part
1 just above, the corresponding free parameter was a
single mixing angle, so the situation is somewhat dif-
ferent. Interestingly, this functional dependence corre-
lates the HLS parameter a and the BKY breaking pa-
rameter �V to the sector of radiative decays (see (19)),
which is obviously not the case when having a single
constant vector mixing angle (see 1/ above). As we
have seen that explicit vector NSB does not provide
any improvement, we have set y = 1 in all fits referred
to hereafter.

– We have first performed fits with the full expression in
(19) computed at the HK masses for ωI and φI as they
occur in (4), using at each minimization step the cur-
rent values for a, g and �V . The fit quality reached is
χ2/dof = 7.89/11 (72% probability). Compared with
the (first mentioned) reference fit in (1/), the gain in
probability is not statistically significant. However, as
it is the same data set and the same number of free pa-
rameters, this could point towards some evidence that
departure from ideal mixing is indeed observed mass–
dependent. Only much improved data could allow to
go farther.
The fit parameter values are a = 2.44 ± 0.04, G =
0.703 ± 0.002 GeV−1 (the relation between G and g
is given in (E1)), the pseudoscalar mixing angle is
θP = −10.30◦ ± 0.20◦ as always above. The main pur-
pose of [9] was to show that this fits perfectly with all
ChPT predictions, and the usual (ChPT) mixing angle
θ8 fulfills θ8 � 2θP .
The breaking parameter is �V = 1.42±0.03 and we get
d2 = (0.147± 0.008) 10−2 GeV−2. All other values are
nearly identical to the corresponding ones in the fits
with one vector mixing angle [1]. The NSB x parameter
value corresponding to the PS mixing angle is fit to
x = 0.900 ± 0.017.
Therefore the varying vector mixing angle is consis-
tent with the full data set; its values are tightly con-
nected with the very small (but significantly non–zero)
value for d2. Using the parameters above and their er-
rors (19) allows to compute δV (m2

ω) = −2.22◦ ± 0.21◦
and δV (m2

φ) = −3.44◦ ± 0.30◦. The errors here are
of course not independent, they nevertheless allow to
understand why a single mixing angle works so well.

9 Guess estimate
of neglected anomalous loops effects

In the numerical analysis above, we have not found any
need to decouple the mixing angle from the ΠωIφI

(s) loop
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expression, as it could be if there were a significant vector
NSB contribution to the mixing angle function, or if sig-
nificant departures from (19) were actually at work. It is
this last point that we shall comment on further here.

Anomalous ωI couplings are different from those for
φI ; taking into account the major ω decay mode, these
could play some role in the present problem, as the con-
nection in (19) betweenΠωIφI

(s) andΠωIωI
(s)−ΠφIφI

(s)
might have been broken in real life.

Among the neglected effects, KKπ intermediate states
from the VPPP Lagrangian [3] could affect the content
of the transition amplitude ΠωIφI

(s) and of both self–
energies ΠωIωI

(s) and ΠφIφI
(s). As already stated, this

(double) loop is real in the mass region of interest for light
meson decays. Then, it would supplement the kaon loop
by logarithmic contributions and not influence the fits sig-
nificantly, as the subtraction term is adjusted numerically
in any case.

Other double loop effects might mainly affect the ωI
and φI self–energies. In numerical analyses, because one
fits the (real) subtraction polynomial, the real parts of
these are of little importance for the reason sketched just
above. Some problems, however, might arise because of
the imaginary parts.

Such imaginary parts can follow from 3–pion interme-
diate states, generated by either ωI → ρπ followed by
ρ → ππ, or by a possible ωI → πππ contact term [3,34,
35]. Both would indeed provide an imaginary part to the
right–hand–side of (19).

We have estimated the corresponding effects in several
manners using numerical methods, as these loops (and
their imaginary parts) cannot be computed in closed form.
Firstly, by computing for running mass values the imagi-
nary parts in the two cases mentioned above (ρπ or contact
term) using the width expression from [34]. The real part
in the right–hand–side of (19) being � 0.10, its imaginary
parts varyies from 0.13×10−2 to 1.7×10−2 from the ω to
the φ mass, when attributing the full 3–pion effect to ρπ.
Attributing instead this effect fully to an ωIπππ contact
term, the corresponding numbers were smaller: 0.10×10−2

to 0.8 × 10−2. In performing this exercise, we were using
the full ω width value, which clearly gives an upper bound.

Secondly, one can assume likely that m2
φI

−m2
ωI
>>

|ΠωIωI
(s) −ΠφIφI

(s)| in the region of meson resonances.
Therefore we have redone the fits by removing the loop
contribution in the denominator of the expression for
δV (s) in (10) and (19). The fit obtained is also quite good
(χ2/dof = 7.94/11, 72% probability), even if negligibly
degraded, and the numerical results do not appreciably
differ from those already mentioned.

Therefore the mixing angle is not greatly affected by
uncertainties in ωI and φI self–energies related to the ne-
glected loops, as long as one is only dealing with (on–shell)
meson decays. Additionally, departures from rotations are
found to be numerically far below the present experimen-
tal sensitivity. However, in scattering processes where the
ω and φ mesons occur, these imaginary part effects should
play some role, as these (3–pion) imaginary parts grow like
some power (� 2) of s and pills up with the imaginary part
of the kaon loop.

10 Loop effects in mass values

It is not the purpose of the present paper to perform a
detailed study of the contribution of self–energies to ob-
served values of vector meson masses. However, we can
limit ourselves to mentioning the effects of kaon loops, as
this trivially follows from the above fits.

The effective masses can be approximated by [18]

m2
V eff. = m

2
V +ΠV V (m2

V ) (29)

It has been checked numerically that rotations have a neg-
ligible effect here and have not been included.

Using the fit parameter values it is easy to get the
following numbers (units are MeV){

mHK
ω = 814.6 ± 6.6 , meff.

ω = 817.6 ± 6.6

mHK
φ = 969.8 ± 14.1 , meff.

φ = 986.1 ± 14.2
(30)

Then the effect of kaon loops is to shift moderately the
ω mass upwards (by 3 MeV), while the shift is important
for the φ (about 16 MeV, 4 times its width!). In order to be
really conclusive the other (anomalous) couplings should
be taken into account, but we see already that effects of
real part of self–energies are qualitatively sufficient to push
the effective mass of the φ far from its HK value and closer
to the observed peak value. This illustrates our statement
that observed masses might be quite different from the
masses in the Lagrangian (we also refer to [22,23] and to
[29]).

11 Departures from ideal mixing
in ω and φ decays

The origin of departures of the ω/φ system from ideal
mixing has been investigated in this paper by analyzing
several mechanisms separately and together. The bench-
mark is the set of all radiative decays of light mesons (14
processes V Pγ and Pγγ) and leptonic decays of vector
mesons (3 modes).

The central part of the various models is the BKY
SU(3) breaking scheme. Its reliability is obviously a crucial
condition.

The breaking scheme [8,1] in the PS sector seems reli-
able as the connection between the HLS model broken in
this way and expectations from ChPT [10–12] is well re-
produced [9]. On the other hand, the way nonet symmetry
is broken in the vector sector is in accordance with basics
of group theory as illustrated by the correspondence be-
tween the model we propose and the standard formulation
of O’Donnell [16].

The BKY SU(3) breaking [7,8] in the vector sector is
harder to evaluate directly; it results essentially in shifting
apart the ωI and the φI HK masses and in a slight modi-
fication of the leptonic decay rates. However, the leptonic
widths of the vector mesons depend on this breaking pa-
rameter (named �V above) and also on the HLS parameter
a (see (E6)); if this breaking procedure were not appro-
priate, one may guess that fits would return a value for a
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inconsistent with its value fit in other independent data
sets.

However, the present fit with a varying vector mixing
angle gives a = 2.44 ± 0.04 (close to the result with a
fixed angle: a = 2.50± 0.03 [1]), in better agreement with
the value coming out from fit to the e+e− → π+π− world
data [5] [4] (a = 2.37 ± 0.02), or to the most recent (and
independent) data set [6] (a = 2.38 ± 0.02). One should
remark that a varying mixing angle (with Z at its physical
value 2/3) makes leptonic and radiative decays providing
a value for a quite consistent with pion form factor studies.

In the pion form factor, the prominent feature ac-
counted for by the HLS a parameter is the strength of
a direct coupling γπ+π− relative to the ρ0 contribution;
its effect extends from threshold to about 1 GeV. The pion
form factor is free of any influence of SU(3) breaking (no-
ticeably XV ) and then the fit value for a is free of any
correlation with �V . Therefore, there is also no manifest
reason to suspect that the BKY SU(3) breaking in the
vector sector could be questionable.

In order to be more exhaustive, we have tried includ-
ing nonet symmetry breaking in the vector sector in two
different ways. Finally, we have considered the challeng-
ing effect produced by kaon loops in generating ωI ↔ φI
transitions which forces to rotate the ideal fields in order
to diagonalize the vector mass term.

Having performed a crossed study of all possible ef-
fects together or separately, we reached the following con-
clusions:

– Whatever its origin, an angle δV exhausts (by far) the
best fit quality, and this quality is statistically opti-
mum. An explicit vector NSB (y) is unable to produce
a comparable effect.

– A mass–dependent phase shift δV (s) behaves as well,
and even somewhat better, without introducing more
freedom in the fits. This could be considered as a slight
evidence in favor of an observed mass–dependence of
the mixing angle, in functional accordance with loop
expressions in the HLS model.

– Leaving free the manifest NSB parameter y cannot
mimic the effect of δV (constant or not). Moreover the
value for y returned by all fits is consistent with no
vector NSB.

– Whatever the context, δV is negative (δV � −3◦), con-
firming within VMD the analysis of Dillon and Mor-
purgo [33], who share certainly the same conventions
as ours. When there are effectively two such angles,
both are found negative and close together. For com-
pleteness, this sign for δV is tightly connected with our
definition of φI = −ss and with the signs in the ma-
trix G(δV ). This corresponds to an ω/φ mixing angle
slightly smaller than its ideal value (θV � 32◦). The
fit probabilities are always of the order 60% to more
than 70%.

– We have carefully tried to find secondary acceptable
minimum χ2 solutions. The aim was to look for a so-
lution with somewhat different parameter values and
noticeably a positive value for δV (and, thus, a vector
mixing angle greater than � 35◦). We never reached

a χ2 better than about 40 units when forcing δV to
stay positive or zero. This means a fit probability of
the order 10−5.

So, the conclusion about the mixing angle coming out
from fits to radiative and leptonic decays is stable under a
large variety of conditions. It is obtained within a highly
constrained scheme with very few parameters and quite
good probabilities (above the 60% level). The data used
come from different kind of experiments and can be widely
considered statistically independent of each other.

Actually, it is quite trivial to prove, from within the
non–anomalous HLS Lagrangian alone, that an average
δV is surely negative while relying on only leptonic decays.
Our definition being φI = −ss, it is trivial to show that
the V −γ coupling constants (see (E6)) of the BKY broken
HLS Lagrangian fulfill14

fωγ cos δV − fφγ sin δV =
fργ
3
,

fωγ sin δV + fφγ cos δV =
fργ
3

√
2�V

(31)

up, possibly, to higher order terms in vector NSB (see
(E7)) and without any influence of radiative decay models.
If φI = −ss, all three fV γ above should be positive [8].
The first relation can be considered as an equation for
δV in terms of leptonic decay data [21] (units are GeV2):
fργ = 0.119±0.003, fωγ = (3.586±0.060) 10−2 and fφγ =
(7.933 ± 0.114) 10−2. It is trivial to solve it and get δV =
−2.79◦ ± 0.84◦.

Therefore, our results merely illustrate that the sign
information for δV , hidden in radiative decays is in per-
fect agreement with the sign which can be obviously ex-
hibited in leptonic decays. So, in the HLS approach, the
algebraic value for δV follows from the radiative and from
the leptonic sectors separately.

However, there is also a result by Achasov,
Kozhevnikov and Shestakov [36] which predicted a cor-
relation between the signs of R = [fφγGφρπ]/[fωγGωρπ]
and the interference pattern in the neighborhood of the
φ meson in the annihilation processes e+e− → π+π−π0.
From the results reported in [37], the conclusion was that
R should be negative and this should imply a positive
value for δV (s). Recent analyses of the e+e− → π+π−π0

cross section by Achasov et al. [38] seem to confirm their
conclusion. The origin of this disagreement has not been
explored and could point toward an interesting puzzle.

Indeed, taking into account the stability of our fit re-
sults inside the HLS framework and the cross–check rep-
resented by the independent analysis of Dillon and Mor-
purgo [33], we consider our small negative value for δV un-
avoidable when using (even separately) radiative and lep-
tonic decays within the HLS framework. A varying mixing
angle leads to the same result. Possible real part effects of
the neglected loops, might be practically accounted for by
the numerical values for d1 and d2. Imaginary part effects
14 These relations correct each for a misprint in unnumbered
relations in [1] nearby (22) and (23) (which are instead both
correct)
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have be shown to be small in the mass region of relevance
for (on–shell) vector meson decays.

12 Conclusion

We have studied in detail the origin of departures of the
ω/φ system from ideal mixing in the non–anomalous HLS
Model. Whatever its origin, the mechanism at work is
clearly the existence of ωI ↔ φI transitions. The simplest
origin of these transitions are the kaon loops to which ω/φ
couple. Because they involve on–shell particles, in reso-
nance decays the ω/φ mixing occurs essentially through a
field rotation, as traditionally assumed. Departures from
rotation could be presently observable in scattering pro-
cesses involving far off mass–shell ω and φ mesons as in-
ternal lines.

In order to make this usable for phenomenological pur-
poses, we have defined an effective Lagrangian piece con-
taining all loops of the non–anomalous HLS Lagrangian
only. Summing up the standard broken Lagrangian with
this effective piece confirms that ωI ↔ φI transitions are
inherent to the HLS model, broken or not, in accordance
with the Schwinger–Dyson equation. The transformation
from ideal to physical fields has been studied.

A possibly new result is that this mixing angle appears
as a well-defined momentum–dependent function δV (s),
depending also on a subtraction polynomial P (s). Its con-
stant coefficient (d0) should be zero in order to recover the
Pγγ decay amplitudes from the FKTUY Lagrangian.

We have left aside the consequences for scattering am-
plitudes and focused on the radiative and leptonic decays
of light mesons. We have thus shown that the model pro-
posed in [1] was perfectly consistent in either of its two
possible variants: constant or invariant–mass dependent
δV . Data give some slight evidence in favor of this depen-
dence, however a constant value for δV is, presently, a good
approximation. Our result compares well with the inde-
pendent analysis by Dillon and Morpurgo using a quite
different framework. The value for a is found in good
agreement with independent pion form factor studies; the
agreement is somewhat better with varying mixing angle
than with a fixed one.
ω/φ mixing is generated by loop effects, without any

help of symmetry breaking. Following some trend, we have
nevertheless examined whether a successful description of
radiative and leptonic decays could be reached (or im-
proved) by adding nonet symmetry breaking in the vector
sector of the HLS Lagrangian. Instead of the remarkable
effect of this kind of breaking in the PS sector, we have
found no indication, statistically significant, that vector
NSB could help in a better understanding of the data as a
whole (we mean the 17 decay modes considered altogether,
as it should). If it exists, vector NSB could however be hid-
den inside δV and thus hard to disentangle from genuine
loop effects; these are, however, widely sufficient in order
to understand qualitatively and quantitatively all the data
we have examined at their present level of accuracy.

From a specific point of view, all the variants explored
(vector NSB, fixed or varying δV ) converge towards a ω/φ

mixing angle slightly below its ideal value for on–shell ω
and φ. Stated otherwise, a constant δV is at about −3◦;
a varying one is equivalent to two such angles (one at the
ω mass, one at the φ mass) but both are negative, close
together and also � −3◦.

Acknowledgements. HOC was supported by the US Depart-
ment of Energy under contract DE–AC03–76SF00515.

Appendix A: the KK or ππ loop expression

The loop expressions for a vector particle decaying into
two pseudoscalar mesons of equal masses can be com-
puted by means of dispersion relations [22] or by using
Pauli–Villars regulators [23]. We derive here this expres-
sion without performing any explicit integration, by rely-
ing on properties of analytic functions and on the unique-
ness properties of analytic continuation.

Let us denote by V a particular vector meson and by P
and P the pseudoscalars of the pair to which they couple;
the common mass to the pseudoscalars is denotedmP . Let
us also denote Π(s) the PP loop function.

From general principles Π(s) is a real analytic func-
tion of s (i.e. fulfilling Π(s) = Π∗(s∗)), real below the
threshold located at s0 = 4m2

P . Its imaginary part above
s0 can be computed using Cutkotsky rules or by means
of the partial width V → PP (ImΠ(s) = −√

sΓ (s)). We
thus have

ImΠ(s) = −g
2
V PP

48π
(s− s0)3/2
s1/2

(A1)

The analytic function Π(s) fulfills (at least) a twice
subtracted dispersion relation, as clear from power count-
ing in the expression for ImΠ(s) above. This equation can
be written

Π(s) = P (s) +
s2

π

∫ ∞

s0

ImΠ(z)
z2(z − s+ iε)dz (A2)

exhibiting that the single cut on the physical sheet lies
along the physical region s ≥ s0. P (s) denotes a poly-
nomial of (at least) first degree. The coefficients in P (s)
should be real and fixed by means of (external) renor-
malization conditions, as in Chiral Perturbation Theory
(ChPT). As noted above, the minimal degree of P (s) is 1;
however, the actual degree of this polynomial (and, hence,
the actual number of subtractions to the dispersion re-
lation above) depends on the assumed behavior of Π(s)
at infinity15. The coefficients of this (arbitrary) polyno-
mial need then to be fixed using renormalization condi-
tions such as the values of Π(s) and/or its derivatives at
some point. This can be chosen as the point s = 0, if one
15 Depending on this, P (s) could also be some entire function
of s, real for real s. All the general properties listed here follow
from the standard analytic S–matrix theory [19]; they apply
obviously to all amplitudes constructed from any acceptable
Lagrangian
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likes to connect with ChPT; other ways are possible which
will not be examined here (see [22,23]).

On the other hand, the theory of analytic function
teaches that, if we can find one analytic function Π(s)
such that (A2) holds, then this solution is unique up to
a polynomial (or an entire function) real for real s. That
is, two arbitrary analytic solutions to (A2) differ only by
a polynomial with real coefficients. In this section, and
in the following ones dealing with loop computations, we
specialize to a minimally subtracted dispersion relation.

Now, let us define the function K(s) by

Π(s) =
g2
V PP

48π
s− s0
s
K(s) + P (s) (A3)

where P (s) is the polynomial already defined; K(s) is real
for real s below threshold and we have




ImK(s) = −s1/2(s− s0)1/2 , (s ≥ s0)

K(s) = c0 + c1s+ c2s2 +
s3

π

∫ ∞

s0

ImK(z)
z3(z − s+ iε)dz

(A4)
The dispersion relation for K(s) should be subtracted
three time in order to remove the constant term at s = 0
which would produce a simple pole for Π(s) as clear from
the first (A3). This is the minimum number of subtrac-
tions consistent with integrability conditions.

One can construct easily such a function, denoted ϕ(s),
real in the interval 0 ≤ s ≤ s0. It is

ϕ(s) = − i
π
s1/2(s0 − s)1/2 ln (s0 − s)1/2 + is1/2

(s0 − s)1/2 − is1/2 (A5)

It can be rewritten:

ϕ(s) =
2
π
s1/2(s0 − s)1/2 arctan

√
s

(s0 − s) , 0 ≤ s ≤ s0
(A6)

Equation (A5) can easily be continued above s0 (by
winding clockwise around this point by an angle of π radi-
ans) and below sc = 0, the crossed threshold (by winding
counter–clockwise by an angle of π radians). This gives
the function K(s) on the whole real axis. The constants
ci in rels. (A4) are fixed by requiring that

lim
s→0
K(s) = 0 , lim

s→0

d

ds
K(s) = 0 and lim

s→0

d2

ds2
K(s) = 0.

(A7)
Then, assuming the minimal number of subtractions,

the general solution for Π(s) is, for real s




Π(s) = d0 + d1s+Q(s)

Q(s) =
g2
V PP

24π2

[
G(s) + s0 − 4

3
s

]

s ≤ 0 : G(s) =
1
2
(s0 − s)3/2
(−s)1/2

× ln
(s0 − s)1/2 − (−s)1/2
(s0 − s)1/2 + (−s)1/2

0 ≤ s ≤ s0 : G(s) = − (s0 − s)3/2
s1/2

arctan
√

s

(s0 − s)

s ≥ s0 : G(s) = −1
2
(s− s0)3/2
s1/2

×
[
ln
s1/2 − (s− s0)1/2
s1/2 + (s− s0)1/2

]

− iπ
2
(s− s0)3/2
s1/2

(A8)
The behavior of Π(s) near s = 0 is simply d0 + d1s+

O(s2), where Q(s) behaves like O(s2) near the origin. This
result coincides with the one of [22]. By performing more
subtractions, one could also choose to fix externally the
s2 behavior of the loop near the origin, etc . . .

The results here apply directly to loops like ππ or KK
and to the ρ, ω and φ self–energies with an appropriate
choice of the specific V PP coupling constant.

Appendix B: the Kπ loop expression

It is not of common custom to give the loop expression
for vector particles coupling to a pair of unequal mass PS
mesons (see however [39]). Its derivation is tightly con-
nected with the previous case. We limit ourselves to the
minimally subtracted case, as before; it is trivial (and te-
dious) to go beyond.

In order to fix notations, we identify this case with
K∗ → Kπ. The imaginary part of the loop is

ImΠ(s) = −g
2
K∗Kπ

24π
(s− s0 − sc)√

s
p (B1)

where we have defined s0 = (mK +mπ)2 and sc = (mK −
mπ)2, the direct and crossed thresholds. p is the cms mo-
mentum of the decay products p = 1/2√
(s− s0)(s− sc)/s. Let us also define, as previously, the

function K(s) and the subtraction polynomial P (s) by

Π(s) =
g2K∗Kπ

48π
s− (s0 + sc)

s
K(s) + P (s) (B2)

where the function K(s) obeys the three time subtracted
dispersion of (A4) with

ImK(s) = −(s− s0)1/2(s− sc)1/2 , s ≥ s0 (B3)

The subtraction constants ci are chosen such as K(s)
� O(s3) when s → 0. The function K(s) can be easily
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constructed as before between s0 and sc, and continued
below sc and above s0. Let us now define




A = s0 + sc − 1
2
√
s0sc

[
(s0 + sc)2 + 2s0sc

]
ln
mπ

mK

B = −
[
(s0 + sc)2 + 4s0sc

4s0sc

]
− 1

8
s0 + sc
(s0sc)3/2

× [
(s0 − sc)2 − 2s0sc

]
ln
mπ

mK
(B4)

Then, for real s, the final solution for Π(s) is given by:




Π(s) = d0 + d1s+Q(s)

Q(s) =
g2K∗Kπ

48π2 [G(s) +A+Bs]

s ≤ sc : G(s) = (s− (s0 + sc))

× (s0 − s)1/2(sc − s)1/2
s

× ln
[
(s0 − s)1/2 − (sc − s)1/2
(s0 − s)1/2 + (sc − s)1/2

]

+

√
(s0sc)(s0 + sc)

s
ln
mπ

mK

sc ≤ s ≤ s0 : G(s) = 2(s− (s0 + sc))

× (s0 − s)1/2(s− sc)1/2
s

× arctan
[
s− sc
s0 − s

]1/2

+

√
(s0sc)(s0 + sc)

s
ln
mπ

mK

s ≥ s0 : G(s) = −(s− (s0 + sc))

× (s− s0)1/2(s− sc)1/2
s

× ln
[
(s− sc)1/2 − (s− s0)1/2
(s− sc)1/2 + (s− s0)1/2

]

+

√
(s0sc)(s0 + sc)

s
ln
mπ

mK

−iπ (s− s0)1/2(s− sc)1/2
s

×(s− (s0 + sc))

(B5)

where the function Q(s) behaves like s2 near the chiral
point. This result is a non trivial extension of the previous
case. Going to other PS meson pairs is easily performed
by changingmπ andmK by resp. the lightest and heaviest
meson mass.

Appendix C: some neglected loops

It could be useful for future developments including
anomalous contributions, or for other purposes, to have at
disposal V P and γP loop expressions which can play some
(presently minor) role in estimating self–energies. Double
loop expressions PPP cannot be computed in closed form;
they might also contribute little to meson self–energies
[29].

C.1. V P loops

Their main effect, at the present level of accuracy of the
data, could be the contribution for ρπ to ωI self–energy. It
is presently overwhelmed by the HK mass values. Other
possible contributions to self–energies or transition am-
plitudes would involve an intermediate η or η′ mesons,
which push the thresholds quite high compared to the φ
mass. The masses for vector mesons here should be the HK
masses. We skip detailed proofs, as they follow closely the
lines in the two Sections above.

Let us fix notations by focusing on ρ → ωπ. Stating
sc = (mω −mπ)2 and s0 = (mω +mπ)2. We have

ImΠ(s) = −g
2
ωρπ

96π
(s− s0)3/2(s− sc)3/2

s
(C1)

and define the function K(s) by

Π(s) =
g2ωρπ
96π

(s− s0)(s− sc)
s

K(s) + P (s) (C2)

Here Π(s) obeys a three time subtracted dispersion
relation, as obvious from power counting in (C1), and then
P (s) is (at least) of degree 2 with arbitrary coefficients to
be fixed by renormalization conditions. K(s) obeys the
dispersion relation in (A4) above with

ImK(s) = −(s− s0)1/2(s− sc)1/2 (C3)

The procedure above applies and the final solution for
Π(s) on the real axis, with the minimum number of sub-
tractions is
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Π(s) = d0 + d1s+ d2s2 +Q(s)

Q(s) =
g2ωρπ
96π2

[
G(s) +A+Bs+ Cs2

]

s ≤ sc : G(s) =
(s0 − s)3/2(sc − s)3/2

s

× ln
[
(s0 − s)1/2 − (sc − s)1/2
(s0 − s)1/2 + (sc − s)1/2

]

− (s0sc)3/2

s
ln
mπ

mω

sc ≤ s ≤ s0 : G(s) = −2
(s0 − s)3/2(s− sc)3/2

s

× arctan
[
s− sc
s0 − s

]1/2

− (s0sc)3/2

s
ln
mπ

mω

s ≥ s0 : G(s) = − (s− s0)3/2(s− sc)3/2
s

× ln
[
(s− sc)1/2 − (s− s0)1/2
(s− sc)1/2 + (s− s0)1/2

]

− (s0sc)3/2

s
ln
mπ

mω

−iπ (s− s0)3/2(s− sc)3/2
s

(C4)
with the minimum number of subtractions. We have de-
fined



A = s0sc

[
−1 +

3
2
s0 + sc√
s0sc

ln
mπ

mω

]

B =
5
4
(s0 + sc) − 3

8
(s0 + sc)2 + 4s0sc√

s0sc
ln
mπ

mω

C = −
[
(s0 + sc)2

8s0sc
+

4
3

+
s30 + s

3
c − 9(s0 + sc)s0sc
16(s0sc)3/2

ln
mπ

mω

]
(C5)

Going from ωIπ loops to other V P loops is straightfor-
ward; let us only note that the formulae above apply pro-
vided the mass ratio argument of the logarithm is chosen
smaller than 1.

C.2. Pγ loops

This contribution could be, for some applications, less aca-
demic than the previous one. It is additionally a singu-
lar limit of the V P case (sc → s0). Let us specialize to
ω → πγ. The crossed and direct threshold now coincide
at s0 = m2

π. We have

ImΠ(s) = −g
2
ωπγ

96π
(s− s0)3
s

(C6)

which follow continuously from the case just above. We
still define the function K(s) by

Π(s) =
g2ωπγ
96π

(s− s0)3
s

K(s) + P (s) (C7)

which fulfills the dispersion relation (A4) with

ImK(s) = −1 , s ≥ s0 (C8)

A specific solution to this equation below threshold is the
function

φ(s) =
1
π
ln

(s0 − s)
s0

(C9)

real for s ≤ s0 and which is analytically continued above
s0 to

φ(s) =
1
π
ln

(s− s0)
s0

− i (C10)

Then the solution for Π(s) is


Π(s) = d0 + d1s+ d2s2 +Q(s)

Q(s) =
g2ωπγ
96π2 [G(s) − s20 +

5
2
s0s− 11

6
s2]

s ≤ s0 : G(s) = − (s0 − s)3
s

ln
(s0 − s)
s0

s ≥ s0 : G(s) =
(s− s0)3
s

ln
(s− s0)
s0

− iπ (s− s0)3
s
(C11)

One should note the disappearance of the square root
branch point compared to the V P case. Therefore, the
collapse of s0 and sc pulls the logarithmic branch point,
originally far inside the unphysical sheet, to the threshold.

Appendix D: self–energies
and transition amplitudes

For the purpose of the present work, we consider all loops
computed in the first two Appendices above amputated
from their couplings constants (stated otherwise, all ex-
pression there are considered with unit coupling con-
stants). Now let us denote Π(s) the kaon loop and Π ′(s)
the pion loop. Let us also denote Π ′′(s, π/η/η′) the loops
functions for the three PS meson pairs K − (π/η/η′).

In exact SU(2) limit, the self–energies for charged and
neutral ρ mesons are the same

Πρρ(s) = 2g2
ρKK
Π(s) + g2ρππΠ

′(s) (D1)

Likewise, in the same exact SU(2) limit, for all K∗ mesons
the self–energies are

ΠK∗K∗(s) = 3g2K∗KπΠ
′′(s, π) + g2K∗KηΠ

′′(s, η)

+g2K∗Kη′Π ′′(s, η′) (D2)
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The coupling constants involved in (D1) and (D2) can
be read off the Lagrangian given in [8] and are not ex-
plicited here. There is no more contributions involving ρ
or K∗ mesons, as soon as one neglects terms of order e2
and all anomalous terms. There is also no transition from
ρ (or K∗) meson to any other meson in the same approx-
imation.

Let us redefine the generic kaon loop Π(s) as in (A8)
by going one unit beyond the minimal subtraction scheme
for reasons explained in the body of the paper. We have


Π(s) = P (s) +

1
24π2

[
G(s) + s0 − 4

3
s+

1
5
s2

s0

]

P (s) = d0 + d1s+ d2s2
(D3)

where s0 = 4m2
K and G(s) is given by (A8). Correspond-

ingly to introducing d2s2 we have subtracted the s2 be-
havior in G(s).

We give now the functions ΠωIωI
(s), ΠφIφI

(s) and
ΠωIφI

(s) which come at next–to–leading order in influenc-
ing the non–anomalous HLS Lagrangian mass term. The
bare Lagrangian piece in (7) implies that the kaon loop in
each self–energy comes in both their charged and neutral
modes; they both coincide with Π(s) defined above, when
assuming exact SU(2) symmetry. Then, we have


ΠωIωI

(s) = 2g2
ωIKK

Π(s)

ΠωIωI
(s) = 2g2

φIKK
Π(s)

ΠωIφI
(s) = 2gφIKKgωIKKΠ(s)

(D4)

where the factor of 2 accounts for the two kaon loops
(charged or neutral modes). All dependences in the cou-
pling constants V KK are explicit. The coupling constants
in (D4) can be read off (7). One should finally note that we
assume the same subtraction polynomial P (s) = d0+d1s+
d2s

2 in all three functions. This is highly constraining and
might be somewhat relaxed. Indeed, one could consider
separately dispersion relations for the functions ΠωIωI

(s),
ΠφIφI

(s) and ΠωIφI
(s) which could then undergo differ-

ent renormalization conditions. This turns out to remark
that a condition like ImΠωIωI

(s) = λImΠφIφI
(s) (λ be-

ing a real constant) for s ≥ s0 does imply ΠωIωI
(s) =

λΠφIφI
(s), up to a polynomial with real coefficients. We

have nevertheless preferred considering as basic the dis-
persion relation for the elementary KK loop. Moreover,
contributions of order e2 and other anomalous contribu-
tions are neglected.

Appendix E: coupling constants
for radiative decays

Starting from the Lagrangian in (24), and using the break-
ing procedure defined by (21) and (23), one can compute
the coupling constants for all radiative and leptonic decays
of relevance. Let us define

G = − 3eg
8π2fπ

, G′ = − 3eg
8π2fK

, Z =
[
fπ
fK

]2

(E1)

We shall use in all formulae a single vector mixing
angle δV . In the framework where it is approximated by a
constant phase (like in [1]), it is the common mixing angle
which expresses departures from ideal mixing. In the case
when one considers a mass dependent mixing, one has to
make the replacement δV ⇒ δV (s = m2

ω) in all expressions
for gPωγ , while the replacement is δV ⇒ δV (s = m2

φ) in
all expressions for gPφγ . In this case, we practically have
two different vector mixing angles δωV and δφV functionally
related.

Let us define the parameters hi (i = 1, · · · 4) which
contain all information about breaking nonet symmetry
in the PS and V sectors, while breaking SU(3) itself only
in the PS sector. Indeed, as the BKY breaking mechanism
does not result in a redefinition of the vector fields, the
radiative decays are not sensitive to SU(3) breaking in
the vector sector; additionally, the condition XWX

4
T = 1

removes all dependences on �T for all couplings constants
except for K∗. Thus, we have




h1 =
(1 + 2y)(1 − x) + 2(y − 1)(2 + x)Z

3

h2 =
(1 + 2y)(1 + 2x) + 4(y − 1)(1 − x)Z

3

h3 =
(y − 1)(1 − x) + (2 + y)(2 + x)Z

3

h4 =
(y − 1)(1 + 2x) + 2(2 + y)(1 − x)Z

3

(E2)

The full U(3) symmetry limit is x = y = Z = 1. The
V Pγ coupling constants are




Gρ0π0γ =
1
3
G

Gρ±π±γ =
1
3
G

GK∗0K0γ = −G
′

3

√
�T (1 +

1
�T

)

GK∗±K±γ =
G′

3

√
�T (2 − 1

�T
)

Gρ0ηγ =
1
3
G

[√
2(1 − x) cos δP − (2x+ 1) sin δP

]
Gρ0η′γ =

1
3
G

[√
2(1 − x) sin δP + (2x+ 1) cos δP

]
Gωπ0γ =

1
3
G

[
(1 + 2y) cos δV −

√
2(y − 1) sin δV

]
Gφπ0γ = −1

3
G

[
(1 + 2y) sin δV +

√
2(y − 1) cos δV

]
(E3)



320 M. Benayoun et al.: An effective approach to VMD at one loop order

The other single photon radiative modes provide


Gωηγ =
1
9
G

[√
2h1 cos δV cos δP − h2 cos δV sin δP

−2h3 sin δV cos δP +
√
2h4 sin δV sin δP

]

Gωη′γ =
1
9
G

[
h2 cos δV cos δP +

√
2h1 cos δV sin δP

−
√
2h4 sin δV cos δP − 2h3 sin δV sin δP

]

Gφηγ =
1
9
G

[
− 2h3 cos δV cos δP +

√
2h4 cos δV sin δP

−
√
2h1 sin δV cos δP + h2 sin δV sin δP

]

Gφη′γ =
1
9
G

[
−

√
2h4 cos δV cos δP − 2h3 cos δV sin δP

−h2 sin δV cos δP −
√
2h1 sin δV sin δP

]
(E4)

The 2–photon decay modes keep exactly their form as

in [1] (Z =
[
fπ

fK

]2
)




Gηγγ = − αem

π
√
3fπ

[
5 − 2Z

3
cos θP −

√
2
5 + Z
3
x sin θP

]

Gη′γγ = − αem

π
√
3fπ

[
5 − 2Z

3
sin θP +

√
2
5 + Z
3
x cos θP

]

Gπ0γγ = −αem
πfπ

(E5)
Finally, the V − γ couplings become



fργ = af2
πg

fωγ =
fργ
3

[h5 cos δV + h6 sin δV ]

fφγ =
fργ
3

[−h5 sin δV + h6 cos δV ]

(E6)

where we have defined

h5 = 1 +

2
3
(y − 1)(�V − 1)

h6 =
√
2�V +

2
3
(y − 1)(�V − 1)

(E7)

TheXV breaking parameter �V has been defined in the
main text. All relations between the coupling constants
here and decay rates are exactly as defined in [1]. One can
check that in the limit y → 1, the present results coincide
with those given in this reference. Finally, keeping only
U(3) breaking to SU(3)×U(1) in both V and PS sectors,
one can also check that the V Pγ coupling constants here
coincide with the axiomatic results of O’Donnell [16].

It should be noted, from (E7), that NSB in the vector
sector for leptonic decays undergo a further suppression by
SU(3) breaking. Finally, as noted in the main text, if the

XT breaking has to be understood as the relevant vector
field renormalization, �V should be understood as �V �T
without further changes in the other relations above.
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